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Communications to the Editor 

On the Stereochemistry of Noncovalent Interactions 
in Organic and Metal Cationic Complexes 

Sir: 

Constitutional modification1,2 of 18-crown-6 (1) to incor­
porate a variety of structural units—mainly rigid "flat" resi­
dues—has led to a series of crown compounds whose free 
energies of association with 7-BuNH3

+SCN- in CDCb can 
be correlated additively with empirically derived parameters 
for a number of different noncovalent interactions in the cat-
ionic complexes. There is evidence,3-6 however, that stereo­
chemical factors can also play a significant role in determining 
the stabilities of both organic and metal cationic complexes in 
appropriately modified 18-crown-6 derivatives. The data4-9 

summarized in Table I reveal that the association constants 
and the corresponding free energies of complexation for 1:1 
complexes formed1-10 between /-BuNH3

+SCN- in CDCl3 and 
the isomers 2-4 of dicyclohexano-18-crown-6,3 and the 18-
crown-6 derivatives a-D-6-a-D-8 incorporating suitably sub­
stituted glucose,4"6 galactose,4-6 and mannose6 residues, are 
considerably less than the corresponding A"a and AG values for 
1 and ?-BuNH3+SCN~ in CDCl3. Table II draws attention 
to the fact that an analogous situation exists for the 1:1 com­
plexes formed between sodium, potassium, rubidium, and ce­
sium chlorides in MeOH and 2-5. In each case, the extent of 
the destabilization of the complexes relative to those formed 
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with 1 is expressed as AAG values. The following general ob­
servations in addition to those already discussed3"5'13 can be 
made: (1) fusion of either one or two diametrically opposed 
six-membered rings to 1 reduces its complexing ability; (2) 
introduction into 1 of trans-fused ring junctions, as in 4, 5, 
a-D-6, /3-D-6, a-D-7, and fS-D-7, or of cis-fused ring junctions 
associated with an anancomeric system (viz., a-D-8) has a more 
drastic effect upon complex strengths than does the intro­
duction of conformationally "flexible" cis-fused ring junctions 
as in 2 and 3. There is the question of whether the sizable AAG 
values in Tables I and II are caused by enthalpy or by entropy 
effects. Approximately uniform increases in translational and 
rotational entropy, as a result of the displacement of solvent 
molecules from the cations and the crown ethers, as well as 
from changes in the ion-pairing pattern, are anticipated to 
operate for both formation of the organic and metal complexes. 
Possibly, the most important entropic contribution to com­
plexation is the decrease in the rotation freedom component 
about bonds that attend adoption of the "a/l-gauche-
OCH2CH2O" conformation in the complex. Significant de­
creases in entropy are observed7'12 on complexation of t-
BuNH3

+ ions (footnote d in Table I) and Na+ and K+ ions 
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Table I. The Association Constants (K3) and Free Energies of 
Complexation (AG) for the Formation of 1:1 Complexes between 
/ - B U N H 3

+ S C N - and 18-Crown-6 (1) and the Derivatives 2-4 and 
cv-D-6-a-D-8 

D o w n 0( 

Up p 
M e O 

crown 

18-crown-6(l) 
cis-syn-cis 

isomer (2) 
cis-anti-cis 

isomer (3) 
trans-syn-trans 

isomer (4) 
a-D-glucoside 

(a-D-6) 
0-D-glucoside 

(0-D-6) 
a-D-galactoside 

(a-D-7) 
(3-D-galactoside 

(/3-D-7) 
a-D-mannoside 

(a-D-8) 

K a 

M"1 

3 000 000 ̂  
17 000''*J 

900 mrf-z-i 

7 100// 

2 000 h •} 

1 300' 

201 000*J 

5 800' 

39 000' 

log 

Ka 

6.48rf 

4.23 

5.95 

3.85 

3.30 

3.11 

5.30 

3.76 

4.59 

AG,* 
kcal/mol 

-8.80 r f 

-5 .75 

-8 .09 

-5 .23 

-4 .49 

-4 .23 

-7.21 

-5.11 

-6 .24 

AAG,* 
kcal/mol 

3.05 

0.71 

3.57 

4.31 

4.57 

1.59 

3.69 

2.56 

" Obtained for the equilibrium, /-BuNH3
+SCN- + crown ^ /-

BuNH3-crown+SCN-, in CDCl3 at 20-25 0C by a 1H NMR spec­
troscopic method110 after equilibration experiments involving the 
crown and /-BuNH3

+SCN- between CDCl3 and D2O phases. * The 
AAG values correspond to the differences in the AG values between 
the particular crown and 18-crown-6 (1). c Value from ref 1. d Values 
for log Â a, AG, AW, (kilocalories/mole), and 7"AS (kilocalories/mole) 
determined calorimetrically7 in MeOH at 25 0C for /-BuNH3

+I" are 
2.90, -4.00, -7.76, and -3.8, respectively. We thank Professor Izatt 
for allowing us access to these results prior to their publication.€ Value 
from ref 8. f Value from ref 9. s For a mixture of isomers, K^ = 
360 000, is reported.1 h Values from ref 4 and 5. '* Values from ref 6. 
J The values which were reported originally4'5'8'9 have been corrected 
on the basis of a revised value1 for the distribution constant for /-
B U N H 3

+ S C N - between the two phases. Since they were also mea­
sured on "scale C", they have been "corrected" (cf. ref 1) by dividing 
the experimentally determined value by 2. 

(footnotes d and e in Table II) by 1 in MeOH. Thus, the \Mi 
values for complexation are higher in magnitude than the AAG 
values for complexation. It seems likely that lower enthalpy 
changes rather than very large decreases in entropy on com­
plexation of cation by 2-a-D-U are responsible for their lower 
free energies of complexation. It is to be expected15^17 that 
electrostatic interactions, including hydrogen bonds, will ex­
hibit directional characteristics. Thus, small conformational 
differences within the "a/Z-gawc/ze-OCH^CH^O" framework 
of the 18-membered ring might account for the observed 
changes in the AAG values as additional ring systems are fused 
to the macroring as in 2-5 and in a-D-6-a-D-8. An overview 
notation18 has been employed in the formula representations 
of these crown ethers and 1 because it serves to highlight the 
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following important stereochemical differences. (1) Host 1 can 
adopt the diamond lattice "all-gauche-OCH2CH2O" con­
formation with Did symmetry14'19 that leads to efficient 
complexation of cations. It also undergoes ring inversions20 that 
are rapid relative to the rate of the decomplexation process.21 

Thus, 1 can be described19 as a g±gTg±g:fg±gT system. (2) 
Both 2 and 3 can attain the "ideal" complexing conforma­
tions15'22 for the 18-membered ring but they undergo 
degenerate inversions via enantiomeric intermediates 
g+g~g~g+g~g+ and g"g+g+g~g+g~ which necessarily in­
volve inversions of their six-membered rings. These inversions 
probably occur23 at rates approximating those of the decom­
plexation processes. Such host systems can be described as 
g+g~g+g~g+g~ — g~g+g~g+g~g+- (3) Although the 18-
membered ring in 4 and in a-D-6-a-D-8 can attain an "ideal" 
complexing conformation,15'22 they are anancomeric systems 

Table II. The Log A"a (based on Ka in M - ' ) and AG Values for the Formation of 1: 
and Cesium Chlorides in MeOH 

Complexes between Sodium, Potassium, Rubidium, 

crown 

18-crown-6(l) 
cis-syn-cis isomer (2) 
cis-anti-cis isomer (3) 
trans-syn-trans isomer (4) 
trans-anti-trans isomer (5) 

log ^a" 

4 . 3 2 ^ 
4.08' 
3.68c 

2.99/ 
2.52/ 

Na + 

AG* 

-5 .9 r f 

-5 .5 
- 5 . 0 
-4 .0 
-3 .4 

AAG* 

0.4 
0.9 
1.9 
2.5 

log Kz" 

6 . 1 0 « 
6 .0F 
5.38c 

4.14/ 
3.26/ 

K+ 

AG* 

- 8 . 3 e 

-8 .2 
- 7 . 3 
-5 .6 
- 4 . 3 

AAG* 

0.1 
1.0 
2.7 
4.0 

log K," 

5.35/ 

3.42/ 
2.73/ 

Rb + 

AG* 

- 7 . 3 

-4 .7 
-3 .7 

AAG* 

2.6 
3.6 

log K^ 

4.70/ 
4.611-
3.49c 

3.00/ 
2.27/ 

Cs+ 

AG* 

- 6 . 3 
-6 .2 
-4 .7 
-4 .0 
-3 .0 

AAG* 

0.1 
1.6 
2.3 
3.3 

" Obtained for the equilibrium, M+-«MeOH + crown ̂ =1 M-crown"1" + «MeOH, at 20-25 0C by potentiometry with ion selective electrodes.3'1 ' 
* In kilocalories/mole. The AAG values correspond to the differences in the AG values between the particular crown and 18-crown-6 (1). c Values 
from ref 11. d Values for log A"a, AG, A// (kilocalories/mole), and TAS (kilocalories/mole) determined calorimetrically12 at 25 0C are 4.36, 
-6.0, -8.4, and -2.4, respectively. e Values for log Ka, AG, AW, and TAS determined calorimetrically12 at 25 0C are 6.05, -8.2, -13.4, 
and -5.2, respectively. /Values from ref 3. 
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that cannot undergo ring inversion. These hosts are described 
as being g+g~g+g~g+g~• (4) Finally, 5 contains an 18-
membered ring which cannot invert nor can it attain as good 
a complexing conformation as the "ideal" one. This host has 
a g+g~g~g+g~g+/g~g+g+g~g+g~ structure which is a ra-
cemic modification. Inspection of the data in Tables I and II 
indicates that the magnitude of the AAG values can be corre­
lated qualitatively15,22 with the above stereochemical classi­
fications as follows: 

g+g~g~g+g~g+/g~g+g+g~g+g~ > g+g~g+g~g+g~ 
> g+g~g+g~g+g~ — g~g+g~g+g~g+ > g±g^g±g'rg±g* 

One feature emerges clearly from this analysis. The denial to 
5 of binding sites which act simultaneously can provide an 
explanation as to why it forms weaker complexes than 4. Re­
cently, attention has been drawn24 to the correspondence be­
tween the complexing ability of crown ethers—and their 
open-chain analogues—and the catalytic effect observed 
during their metal templated syntheses. There is also evidence, 
however, that the directional characteristics of noncovalent 
bonds can influence diastereoisomeric ratios in templated 
syntheses of crown ethers by cations. In the attempted synthesis 
of 4 and 5 by condensation of (±)-trans-2,2'-(\ ,2-cyclohexy-
lidene)dioxyethanol (9) with its bistosylate (10) in benzene in 
the presence of f-BuOK, only 4 was isolated with a comment25 

about "the marked tendency for pairing of (+) with (—) in the 
cyclisation to give the meso form". 

The fact that large AAG values are observed for both metal 
and f-BuNH3+ ions suggests that the contributions from 
ion-dipole interactions,26 as well as those from hydrogen 
bonding, are sensitive to small conformational differences in 
the hosts even though an all-gauche framework is available. 
By the same token, it should be possible to build more highly 
structured complexes by exercising control over synthetic host 
conformations. The ultimate in sophistication in synthetic host 
design will probably be realized by exercising configurational 
controls to locate constitutional features in particular con­
formational environments.17 // seems not only reasonable but 
logical that constitution, configuration, and conformation 
must define the structures of noncovalently bonded species 
in much the same way as they define the structures ofcova-
lently bonded species! 
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Comment on the Communication "Photoionization 
by Green Light in Micellar Solution" 

Sir: 

A recent communication by Thomas and Piciulo1 described 
and interpreted the dependence of the photoionization yield 
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